
1	Supporting information
2	"Modelling landscape connectivity for greater horseshoe bat using an empirical quantification of
3	resistance"
4	Published in Journal of Applied Ecology, 2018
5	
6	David Pinaud ¹ , Fabien Claireau ^{2, 3, 4} , Maxime Leuchtmann ⁵ & Christian Kerbiriou ^{2, 6}
7	Correspondence: David Pinaud, Email: pinaud@cebc.cnrs.fr
8	¹ Centre d'Etudes Biologiques de Chizé, UM7372 CNRS/Université La Rochelle, 405 route de Prissé-la-Charrière, 79360 Villiers-en-Bois,
9	France
10 11	² Center for ecology and conservation sciences, UMR7204 MNHN-CNRS-UPMC-Sorbonne Université, National Museum of Natural History, 43, rue Buffon, 75005 Paris, France
11	 ³ Zoology Institute and Museum, University of Greifswald, Soldmann-Str. 14, D – 17 489 Greifswald, Germany.
13	⁴ Naturalia environnement, Site Agroparc, 20 rue Lawrence Durell, 84911 Avignon, France
14	⁵ Nature Environnement 17, 2 Avenue Saint-Pierre, 17700 Surgères, France
15	⁶ Biological Marine Station, National Museum of Natural History, 29900 Concarneau, France
16	
17	
18	
19	Appendix S1: details for identifying commuting period
20	Within this study, time is expressed at local time (GMT + 2 h). For the study period, civil sunset
21	occurred at c. 22:25, civil sunrise at c. 05:45. At this period, according to weekly counts, greater
22	horseshoe bats leave first the colony, mainly between 22:05 and 22:30.
23	The greater horseshoe bat activity in hedgerows around the colony was not constant through the night
24	and two peaks occurred (see Fig. A1): one in the beginning (30 min before and 25 min after the
25	sunset) and one at the end (60 min before and 20 min after the sunrise). As we focused on the
26	commuting period (our significant behavioural state for corridor identification, Abrahms et al. 2017)
27	the greater horseshoe bat detections were taken into account only during these peaks of the night
28	(22:00-22:55 local time), as detections in hedgerows outside this period reflected mainly individuals
29	while foraging and less while commuting. In addition, the second peak in the morning was not taken
30	into account because, according to our observations with radio-tracked greater horseshoe bats during

31 this study, some bats returned near the colony at the end of the night and foraged for some time in the 32 immediate vicinity (< 2 km) before going in the colony building. Then it was not possible to exclude 33 foraging activity at this time.

34

Fig. A1. Number of *Rhinolophus ferrumequinum* contacts per 5 mins lag. Large, black, dotted lines indicate sunset and
 sunrise time (local). Grey dotted lines indicate commuting period for sunset.

- 37
- 38

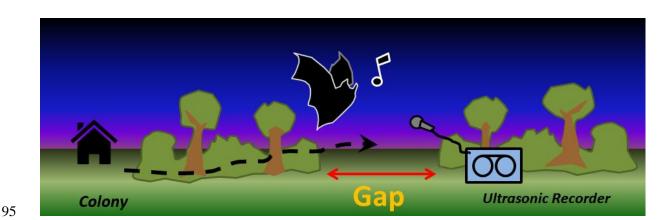
39 S2: Details on surveys

40 Acoustic sampling

41 Unattended full-spectrum recordings (at 384 kHz sampling rate in WAC and WAV format depending 42 of acoustic recorders) were done for a whole night (from 30 min before civil sunset to 30 min after 43 civil sunrise) using Song Meter (SM2BAT+ and SM3BAT) units fitted with omnidirectional ultrasonic 44 microphone (Wildlife Acoustics Inc. USA). As these microphones present not exactly the same 45 characteristics (with a possible small difference in sensitivity), we conducted preliminary tests on the 46 field to find the accurate parameters in trigger thresholds, in order to obtain the same sensitivity in 47 detection. In order to validate this, we compared a posteriori the results (accounting for habitats) and 48 found no difference in the ratio of detection between the two types of microphone in our dataset. We 49 used a trigger level threshold of -12 dB for SM3BAT and -6 dB for SM2+BAT, for frequencies

between 12 and 384 kHz. Recordings were performed only during favourable weather conditions, *i. e.*no rain, low wind speed and air temperature higher than 15°C.

52


53 Radio-tracking

54 On 08/07/2016 and on 17/07/2016, respectively 6 and 5 lactating GHB were fitted with LB-2X radio-55 transmitters (Holohil Systems Ltd, Canada) glued on fur between the shoulder blades with Skinbond® 56 surgical adhesive. The weight The mass of the transmitter (0.31 g) plus adhesive never exceeded 5% 57 of body weight (Aldridge and Brigham 1988, Wilkinson and Bradbury 1988) Bats were captured by 58 placing two Austbat Harptraps (Faunatech/Austbat, Australia) closed to the colony at a place where 59 they usually commute at the beginning of the night. Weekly counts at emergence showed no effect of capture sessions. Body mass and forearm length were measured respectively with a digital scale to the 60 61 nearest 0.1 g and a calliper to the nearest 0.1 mm. Sex was assessed by inspecting genitalia and finger 62 joints of wings were trans-illuminated to distinguish juveniles from adults (Anthony 1988). Only lactating females were equipped, lactation status was determined by the occurrence of enlarged nipples 63 64 surrounded by a hairless skin area and. Transmitter mass represented on average 2.5% of the body mass, and never exceeded the recommended limit of 5% (Aldridge & Brigham 1988). Three bats lost 65 quickly their transmitter (probably because of fur moulting that begins at this period), so 8 individuals 66 67 were effectively tracked.

68 From dusk to dawn from 11/07/2016 to 22/11/2016, bats were radio-tracked by four to five trained 69 tracking teams in cars or on foot, coordinated with cellphones and equipped with radio-receivers 70 (Australis 26k Scanning Receiver, Titley Scientific, Columbia USA) and hand-held three-element 71 Yagi antennae. Tracking began 1-2 days after equipment to ensure a recovery after capture. Between 72 three and five bats were tracked each night for as long as the radio transmitter batteries functioned. 73 Bats were mainly tracked by the "homing in" technique, which involved following the bats closely as 74 possible (without disturbance) to localize them and identifying their commuting routes and foraging 75 areas in situ (White & Garrott 1990). In some cases where homing-in technique could not be applied, 76 synchronized cross bearings were used from two or three coordinated teams with azimuth measures 77 taken within five seconds. In this case, positions of bats from its bearings were estimated later using

the "triangulation" QGIS plugin (Borys Jurgiel, Faunalia, Italy). Using field experiments with a hidden

- ransmitter, the accuracy of this technique was estimated to be < 100m. The bats' locations and
- 80 behaviours were recorded at five minute intervals over the entire night and reported as precisely as
- 81 possible on 1:25 000 topographic maps (Institut National de l'Information Géographique et
- 82 Forestière, France). Rapid, directional movements between distant sites were classified as commuting;
- 83 while a bat kept flying in a relatively small area was classified as foraging. To assess habitat use from
- 84 tracking, locations classified as commuting were excluded later from the analysis.
- 85 To avoid temporal autocorrelation, we considered tracking locations to be independent when at least
- 86 30 min separated two consecutive locations (White & Garrott 1990). Locations with a lower interval
- 87 were then excluded from the analysis. This duration corresponds to the minimum time needed for a bat
- to move from one end of its home range to the other; it was estimated according to some observations
- of our tracked GHB returning to the colony (for example 15 min for a return from a distance of 4 km
- away). The radio-tracked individuals leave generally the colony between 22:10 and 22:30 and reach
- 91 rapidly their foraging areas within 30 min. On various occasions, we observed at least two radio-
- 92 tracked individuals commuting in vineyards when leaving the colony's village.
- 93
- 94

- 96 Fig. A2. Schematic view of the acoustic sampling for recording greater horseshoe bat given a gap in corridors around the
- 97 colony.
- 98
- 99

100 S3: Assessment of connectivity models with acoustic data considering presence / absence of

Models	K	AICc	Δ AICc	AICc weight	Cum. weight	Log Likelihood	Tjur's R ²
~ Dist. Colony	2	92.91	0.00	0.86	0.86	-44.37	0.171
~ Acc. Cost	2	96.58	3.66	0.14	1.00	-46.21	0.129
~ 1	1	104.41	11.49	0.00	1.00	-51.18	-

101 greater horseshoe bats during the whole night

Table A. Results of model selection in order to validate the accumulated cost surface model, explaining the presence of

104 greater horseshoe bat during the whole night (n = 75 locations, for one night) as a function of distance and accumulated cost

105 from the colony. The last column shows the coefficient of discrimination Tjur's R², as a standard measure of explanatory

- 106 power for the two models.

113 S4: Details about the radio-tracked greater horseshoe bats

Bat ID	A	В	С	D	Е	F	G	Н
Date of capture	11/07/2016	11/07/2016	11/07/2016	11/07/2016	11/07/2016	11/07/2016	17/07/2016	17/07/2016
Sex	Female							
Status	Lactating							
Forearm Length (mm)	55.3	55.7	55.0	56.1	55.9	54.1	54.6	57.7
Weight (g)	20.3	17.2	16.7	18.2	18.9	17.6	21.8	22.6
N independent locations	7	5	12	8	11	1	6	7
Average (Max.)	5814	3774	6024	6912	4532	218	4623	1879
distance to colony (m)	(7582)	(6950)	(6645)	(7555)	(6433)	(-)	(7164)	(2850)

Table B. Details about the 8 greater horseshoe bats radio-tracked during the study.

119 S5: Calculating relative connecting values for corridors

As an efficient mapping tool for landscape planners and conservationists, one can calculate and map the relative connecting values for natural corridors (hedgerows and woodlands) in the vicinity of the colony, in order to identify the need for protecting high connecting hedgerows and for enhancing / restoring low connectivity elements. This could be done by calculating the residuals from a regression model of the accumulated cost from Least-Cost Path (LCP) analysis as a function of distance to the colony (here the scaled-Pearson residuals from a GAM, see Fig. A3). Then one could map these residuals as relative connecting values in a specific landscape independently of the distance to the

127 colony.

128

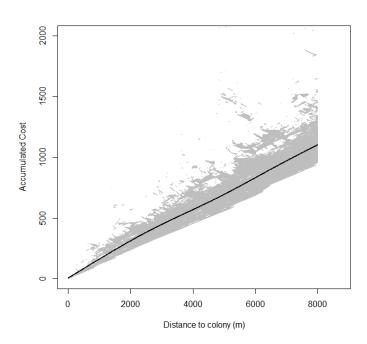
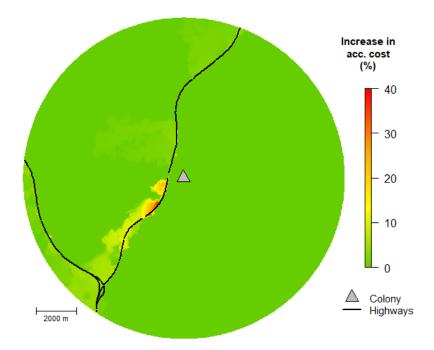


Fig A3. Predicted Accumulated cost from LCP analysis as a function of distance to the colony for each pixel of the map.
Black line indicates prediction from a GAM model.

132

133


134 **S6: Testing different scenarios on connectivity**

135 The proposed framework can be used to test different scenarios on connectivity. By changing values

136 of conductance / resistance for some habitats / pixels, one can calculate accumulated costs with LCP

137 and compare the different scenario using independent dataset to validate those scenarios. As an

138 example of application, we present two scenarios with different conductance values for highways. In 139 fact, large roads like highways could represent an important barrier for bats (Berthinussen & 140 Altringham 2012), we created two connectivity submodels with two different (extreme) values for 141 highways (larger than 30 m): set like every open space (i. e. related to the distance to the closest 142 connecting feature) or set to null (meaning impassable, except at bridges or tunnels). The 143 corresponding rasters of conductance were calculated and the accumulated cost surface estimated for 144 each cell of the landscape using the colony as the origin location. The two connectivity sub-models 145 (highways considered as passable or impassable by bats) performance were assessed using these both 146 independent datasets with the same statistical comparisons as the paper.

147

148 Fig. A4: Relative difference (in %) in accumulated cost between the both scenarios (impassable highways and passable

- 149 highways).
- 150
- 151
- 152

Models	K	AICc	Δ AICc	AICc weight	Cum. weight	Log Likelihood	Tjur's R ²
~ Acc.Cost IH	2	82.85	0.00	0.38	0.38	-39.34	0.2410
~ Acc.Cost PH	2	83.03	0.18	0.35	0.73	-39.43	0.2382
~ Dist. Colony	2	83.57	0.72	0.27	1.00	-39.70	0.2362
~ 1	1	100.07	16.44	0.00	1.00	-49.01	-

Table C. Results of model selection in order to validate the accumulated cost surface models with the both scenarios:
Impassable Highways (IH) and Passable Highways (PH), explaining the presence of greater horseshoe bat during the
commuting period (*n* = 75 locations, for one night) as a function of distance and accumulated cost from the colony. The last
column shows the coefficient of discrimination Tjur's R², as a standard measure of explanatory power for the 3 models.

	Parameter	Estimate	Std. Error	t-value	2.5% CI	97.5% CI		
	StdzdDiff IH	0.0596	0.0264	2.254	0.0048	0.1099		
	StdzdDiff PH	0.0504	0.0252	1.998	-0.0043	0.1043		
160	Table D. Estimates of st	andardized differe	ences between accum	ulated costs at rando	m locations and accur	mulated cost at the		
161	tracking locations from	both modelling sco	enarios "Impassable I	Highways" (IH) and	"Passable Highways"	(PH). These		
162	standardized differences	were estimated w	ith mixed models Sta	<i>lzdDiff</i> ~ <i>1</i> with indi	vidual ID as random e	ffect. The 95%		
163	confidence intervals were estimated with a parametric bootstrap.							
164								
165	According to these	results, a small	impact of highwa	ays was detected	, limited in space.	The overall		
166	impact needs to be confirmed with a specific sampling design for detecting the loss of connectivity in							
167	the landscape due to these roads.							
168								
169	REFERENCES							
170	Abrahms, B., Sawy	er, S.C., Jordar	, N.R., McNutt, J	J.W., Wilson, A.I	M. & Brashares, J	.S. (2017) Does		
171	wildlife resour	ce selection ac	curately inform c	corridor conserva	tion? Journal of A	pplied Ecology,		
172	54 , 412–422.							
173	Aldridge, H.D.J.N.	& Brigham, R.	M. (1988) Load o	carrying and man	euverability in an	insectivorous		
174	bat: a test of th	ne 5% 'rule' of	radio-telemetry.	Journal of Mam	nalogy.			
175	Anthony, E. (1988)	Age determina	tion in bats (<i>Chir</i>	roptera). Ecologi	cal and behaviou	ral methods for		
176	the study of ba	uts (ed T.H. Ku	nz), pp. 47–58. S	mithsonian Instit	ution Press, Wash	nington.		

- 177 Barataud, M. (2015) Acoustic Ecology of European Bats : Species Identification, Study of Their
- 178 *Habitats and Foraging Behaviour*. Biotope & National Museum of Natural History, Paris.
- Bas, Y., Bas, D. & Julien, J.-F. (2017) Tadarida: a toolbox for animal detection on acoustic recordings. *Journal of Open Research Software*, 5.
- 181 Berthinussen, A. & Altringham, J. (2012) The effect of a major road on bat activity and diversity.
- 182 *Journal of Applied Ecology*, **49**, 82–89.
- 183 White, G.C. & Garrott, R.A. (1990) *Analysis of Wildlife Radio-Tracking Data*. Academic Press, San
 184 Diego.
- 185